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Abstract 

A new type of liquid metal battery based on sodium and zinc is described. One possible use of 
such a battery is as a power buffer in an aluminium plant, thus enabling extreme power cycling. 
By locating the battery in an idled potline, existing infrastructure such as buildings, rectifiers, 
potshells, and busbars can be utilised. The reversible voltage of the battery is about 1.9 V, and it 
is suggested to place three battery stacks connected in series to 5.7 V in each potshell of the idle 
line. By limiting the voltage loss in the electrolyte to 0.15 V per stack at 250 kA, it was 
estimated that the battery capacity could be about 2.40 MAh, corresponding to 250 kA for 9.6 
hours. Provided that the electrolyte height constitutes 50 percent of the total, the stack height 
will be less than 1.4 m, which can easily be accommodated inside a potshell. 
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1. Introduction

Rechargeable liquid metal batteries (LMBs) are based on two liquid metals separated by a 
molten salt [1]. LMBs are attractive due to rapid kinetics, high electrolyte conductivity, only 
liquid phases (no dendrite formation), and potentially cheap and abundant materials. A new type 
of membrane free LMB has been suggested [2]. The concept utilises sodium and zinc, while the 
electrolyte is a ternary mixture of sodium chloride, zinc chloride, and calcium chloride. The 
battery is intended for use in stationary applications, e.g., for compensation of variable electric 
power consumption and production in an electric grid based on other energy sources than 
hydropower, thereby serving to stabilise the grid. 

A use case that seems well suited relates to the energy-intensive production of primary 
aluminium. In many regions, the spot price of electricity varies significantly with time (season, 
week, day, and hour). Taking Germany as an example; even strongly negative electricity prices 
have been observed occasionally [3]. Therefore, some aluminium plants are preparing for, 
experimenting with, and even practising power-cycling (power modulation), i.e., operating the 
electrolysis cells with reduced power during hours with high energy prices, and increasing the 
power when the price is low. The energy balance of the electrolysis cells is very delicate 
however, and the energy window for safe operation is narrow, although variable cooling of the 
cell sides can be used as a means of increasing the window for power-cycling [4].  

The use of an LMB can potentially be an extremely effective strategy for increasing the power-
cycling window. The power variation would then be handled by the battery, and not by the 
electrolysis cells. There are no principal limitations in this type of power-cycling; the only 
restriction will be the installed battery capacity. 

According to data compiled by Pawlek [5], 6.5 Mt/y of the World's total aluminium capacity of 
79 Mt/y is idled (2016). Although this includes a number of plants that are entirely closed, it 
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also means that many plants are operating with one or more shut down potlines. There are a few 
additional advantages by locating the LMB in a partly closed aluminium plant: 

   The building infrastructure is already there. 
   The electric bus bars are present. 
   The battery can be located in vacant cell positions, perhaps inside electrolysis cell 

potshells, as was presumed in the present work. 
   The rectifier and other electrical infrastructure is in place and may be used as-is or 

with modifications for charging the battery. 
   The personnel in the aluminium plant are aware of and trained for the risks related to 

handing of liquid metals and molten salts. 
 
3. Principle of the Liquid Metal Battery 
 
A principle sketch of the LMB is shown in Figure 1. The battery contains zinc and sodium, 
separated by an electrolyte consisting of zinc chloride, sodium chloride, and calcium chloride. 
The electrolyte is divided in two parts by means of a diaphragm. Detailed descriptions are found 
below.  
 

      
Figure 1. Principle of the liquid metal battery. 

 
3.1. Electrode and Cell Reactions 
 
The electrode reactions (during discharge) are as follows: 
 
       e2NaCl2Cl2Na2:electrodeSodium         (1) 

   Cl2Zne2ZnCl:electrodeZinc 2        (2) 
 
The cell reaction is the sum of the two electrode reactions, 
 

 ZnNaCl2ZnClNa2
F2

2            (3) 
 
The standard cell voltage for this reaction (E0, based on Gibbs energy) and the isothermal 
voltage (Eiso, based on the enthalpy change) are +1.914 V and +2.170 V at 600 °C, respectively 
[6]. The reversible voltage (Erev) is related to the activities of the substances in Equation 3: 
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